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Abstract. Electron diffraction was used to study the stoichiometric dependence of the
modulation wave vector in the incommensurately modulated structures ofε- and ε′-LixV2O5.
For ε-LixV2O5 (0.326 x 6 0.52) and ε′-LixV2O5 (0.526 x 6 0.80) the space group of
the basic structure isPmmn, and the superspace group characterizing the one-dimensionally
modulated structure is found to bePmmn (0γ 1/2). The stoichiometry dependence of the
modulation wave vectorq can be described by a staircase function, withγ being constant
at γ = 0.435(5) for ε-LixV2O5. A second plateau has been observed in the stability field
of ε′-LixV2O5 for 0.5506 x 6 0.575 with γ = 0.465(5). For the stoichiometry range
0.5756 x 6 0.707, γ varies continuously betweenγ = 0.465(5) andγ = 0.565(5).

In the present paper we will show that the system LixV2O5 can be described by an extended
Frenkel–Kontorova model. Despite its extreme simplicity in the one-dimensional case, the model
exhibits most of the features necessary for understanding the variation of the dependence of the
modulation wave vector on the lithium stoichiometry.

1. Introduction

The phases LixV2O5 belong to a group of intercalation compounds which are formed during
the topotactic intercalation reaction in which lithium ions intercalate into V2O5; this takes
place, for example, when V2O5 is used as the cathode material in a reversible ambient
temperature Li battery. For the stoichiometry range 0.006 x 6 1.00, it is known that four
metastable phases are formed, characterized by V2O5-related crystal structures. Specifically,
the four phases are:α-Li xV2O5 (0.00< x 6 0.13), ε-Li xV2O5 (0.326 x 6 0.52), ε′-
Li xV2O5 (0.526 x 6 0.80), and δ-Li xV2O5 (0.886 x 6 1.00) [1–6]. The quasi-two-
dimensional layered structures are built up of edge- and corner-sharing VO5 pyramids,
forming infinite layers stacked alongc. The intercalated lithium ions are located in the
van der Waals gap between the layers. In the phasesα-, ε-, and ε′-Li xV2O5, the layers
are stacked directly on top of each other, leading to the formation of big cubeoctahedral
cavities. These cubeoctahedral cavities, composed of eight oxygen atoms of one V2O5 layer
and four oxygens of the neighbouring one, are connected by shared fourfold faces, thus
forming infinite channels along the crystallographicb- andc-axes. Along thea-axis, these
channels are displaced by the vector1

2b and locked by VO5 pyramids, thus hampering the
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diffusion of intercalated ions in this direction. In theδ-phase, the V2O5 layers are displaced
by 1

2b, leading to tetrahedral cavities instead of cubeoctahedral sites for the intercalated Li+

ions [7].
Recent investigations of the structure ofε′-Li xV2O5 have revealed that the orthorhombic

structure is incommensurately modulated at room temperature [8]. The space group of the
average structure isPmmn; the (3+ 1)-dimensional superspace group [9] was found to be
Pmmn (0γ 1/2). The one-dimensional modulation wave vector isq = γ b∗ + 1

2c
∗.

The two phasesε- and ε′-Li xV2O5 can be distinguished only in their low-temperature
behaviour. Phasesε-Li xV2O5 with 0.326 x 6 0.52 are stable against a shear deformation,
in contrast to phasesε′-Li xV2O5 with 0.526 x 6 0.80, which undergo a continuous
ferroelastic phase transition on cooling [1, 3]. In this context we have studied the structure
of ε-Li xV2O5 by means of electron diffraction, and we will show that this phase is also
incommensurately modulated at room temperature.

In the present paper, we describe the stoichiometric dependence of the modulation wave
vector for the stoichiometry range 0.326 x 6 0.71. It will be shown that the dependence
is different for the two phasesε- and ε′-Li xV2O5. The results will be discussed in terms
of a Frenkel–Kontorova model [10] in its extended form derived by Frank and van der
Merwe [11].

2. Experimental details

Polycrystallineε- and ε′-Li xV2O5 were prepared by chemical reduction of polycrystalline
vanadium pentoxide by lithium iodide in acetonitrile at room temperature [2]. The lithium
stoichiometry was determined by iodometric titration with a standardized aqueous Na2S2O3

solution. The uncertainty in the lithium stoichiometry found by analysis is estimated to be of
the order of 0.5%, in accordance with earlier experiments [1–5]. The purity of the samples
analysed was investigated by means of x-ray powder diffraction. The determination of the
lattice parameters was performed by least-squares refinements with respect to the centres of
the shape-fitted Bragg peaks [12].

Electron diffraction patterns were obtained with a Philips EM400T electron microscope,
using an acceleration voltage of 100 kV(λ = 0.037 Å) at room temperature. The samples
were prepared by dispersal of the crystallites in ethanol, and subsequent deposition on a
carbon support grid containing holes. The grain size of the plate-like crystals was estimated
visually to be of the order of 0.5–5µm. The thickness of the crystallites was of the order
of a few hundredÅ.

The diffraction patterns were evaluated by measuring the ratios of distances between
appropriately chosen reciprocal-lattice points in the photographs. The quoted standard
deviation ofγ is that obtained by repeated measurements of the distances between pairs of
reflections. The homogeneity of the samples was investigated by determining the modulation
wave vector for a large number of crystals. The observed modulation wave vector was
always within the estimated standard deviation. This observation makes us sure that the
samples investigated are homogeneous.

3. Results

Previous electron diffraction studies have shown that the room-temperature phase of
ε′-Li xV2O5 is incommensurately modulated [8]. The basic lattice crystallizes in the
orthorhombic space groupPmmn, with lattice parametersa = 11.4086(2) Å, b =
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3.5640(1) Å and c = 4.5042(1) Å, for a chemical composition withx = 0.605(3). The
satellite reflections up to third order can be indexed in the(3+ 1)-dimensional superspace
group Pmmn (0γ 1/2). The modulation wave vectorq is one dimensional, and can be
written as

q = γ b∗ + 1
2c
∗ (1)

whereb∗ andc∗ are the reciprocal-lattice vectors of the basic structure. The incommensurate
componentγ depends on the stoichiometry.

In the present study, we have investigated different phases LixV2O5 with
0.326 x 6 0.71, thus covering theε- andε′-phases. In the course of these investigations,
we have found that both phases are incommensurately modulated at room temperature.

Figure 1. An electron diffraction pattern ofε-Li 0.591(3)V2O5 at 298 K (zone [̄104])

Figure 1 shows an electron diffraction pattern of the zone [1̄04] of ε-Li 0.591(3)V2O5,
taken at 298 K.

The set of observed reflections can be subdivided into two subsets. One subset consists
of strong diffraction spots defining an orthorhombic lattice with space group symmetry
Pmmn. The second subset consists of first-, second-, and third-order satellites, which are,
in general, much weaker than the main reflections. They are found at positions±mq with
respect to the main reflections, wherem is a small integer. All of the reflections can be
indexed by four integershklm, according to

S = ha∗ + kb∗ + lc∗ +mq. (2)

The nth-order satellites havem = ±n;m = 0 corresponds to the main reflections.
In the electron diffraction pattern, an incommensurate structure with a modulation wave

vectorq cannot be distinguished from one with a modulation wave vector 1−q (see figures
2(a) and 2(c)). Nevertheless we have chosen a modulation wave vectorq with γ < 0.5
for phases withx 6 0.575, and a modulation wave vectorq with γ > 0.5 for phases with
x > 0.575 (see figures 2(a)–2(c)). If we were to always use a modulation wave vectorq
with γ < 0.5, the correspondingq-dependence would be in conflict with current theories
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Figure 2. Schematic drawings of the dependence of the electron diffraction pattern of zone
[1̄04] on the increasing modulation wave vectorq, representing phases LixV2O5 with increasing
lithium contents: (a)q1 = 0.435b∗ + 1

2c
∗, (b) q2 = 1

2b
∗ + 1

2c
∗, (c) q3 = 0.565b∗ + 1

2c
∗. The

main reflections are indicated by large circles, and a number of first-order, second-order, and
third-order satellite reflections by increasingly smaller circles. The reflections are indexed by
four integershklm (see the text).

Figure 3. The incommensurate componentγ of the modulation wave vector as a function of
the lithium stoichiometry.

on modulated structures (see, for example, [20]). The resulting stoichiometric dependence
qγ (x) is shown in figure 3.

The functionsqγ (x) are different for the two phases investigated,ε- and ε′-Li xV2O5.
While γ is constant forε-Li xV2O5, it varies with the lithium stoichiometryx in the
stability field of ε′-Li xV2O5. The lithium concentration for the change in the behaviour
of q corresponds to the critical concentration for the isomorphous phase transition
ε → ε′, determined from low-temperature powder diffraction experiments [3], thus lending
additional support to the notion of the existence of two isomorphous, but distinct, phases.
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For the phaseε-Li xV2O5, the value ofγ is constant, withγ = 0.435(5) over the whole
stoichiometry range 0.326 x 6 0.52. The constant value ofγ can be considered as being
part of a devil’s staircase function. A second plateau is observed for 0.5506 x 6 0.575
with γ = 0.465(5). From x = 0.575 to x = 0.707, γ increases quasi-continuously from
γ = 0.465(5) to γ = 0.565(5). Within the resolution of our experiment, we have not
observed the locking-in ofq to any value ofγ in this stoichiometry range. Nevertheless
we cannot exclude the possibility of additional plateaus. Much higher resolution would be
needed to decide on this question.

A schematic drawing of the electron diffraction patterns of zone [1̄04], representing
phases withγ < 0.5, γ = 0.5, andγ > 0.5, is given in figure 2. For lithium concentrations
x far away from a concentrationx = 0.585, the distance between corresponding satellite
reflections withm = ±n is large, whereas for chemical compositions nearx = 0.585,
the splitting is very small. In the ideal case, the two reflections should coincide in one
commensurate superstructure reflection withγ = 0.5 (figure 2(b)), corresponding to a
commensurate superstructure witha′ = a, b′ = 2b, and c′ = 2c. Experimentally, such
a commensurate twofold superstructure was not observed, possibly due to insufficient
resolution.

4. Discussion

The structures ofε- and ε′-Li xV2O5 are closely related to that of the parent structure
V2O5. They are built up of edge- and corner-sharing VO5 pyramids, forming quasi-two-
dimensional layers stacked directly on top of each other. This stacking sequence leads
to the formation of cubeoctahedral cavities in the van der Waals gaps, suitable for the
intercalation of lithium ions. These cubeoctahedral cavities share common fourfold faces,
and form infinite channels along the crystallographicb- andc-axes. The distribution of the
intercalated lithium ions over the available cubeoctahedral cavities is still unknown, but it
is beyond any reasonable doubt that the Li+ ions occupy off-centre positions, and that an
occupation of one cubeoctahedron with more than one Li+ ion is impossible.

The intercalation of lithium ions into the cubeoctahedral cavities does not break the
orthorhombic symmetry of the host structure V2O5. However, the appearance of satellite
reflections at incommensurate positions clearly demonstrates that the three-dimensional
translation symmetry is broken. The deviation from the average structure is periodic,
but incommensurate with the basic lattice. The satellite reflections have been observed
in electron diffraction experiments only, and not with x-rays. To exclude the possibility that
the satellites are just a result of an electron-beam-induced effect, we have investigated a
large number of crystals for different exposure times and different beam current intensities.
Neither of these variations in conditions influenced the modulation wave vector. Therefore,
the fact that the incommensurate superstructure reflections have been observed only in
electron diffraction experiments indicates that only weak scatterers for x-rays are affected
by the modulation. Thus, significant displacements of the oxygen and vanadium atoms
can be excluded, and displacements and/or ordering of the lithium ions remain as the most
probable explanation. The fact that the modulation wave vector has components alongb∗

andc∗ indicates that ordering of the lithium ions in the channels parallel tob andc must
be responsible for the formation of the modulated structure.

The V2O5 structure with its regular array of cubeoctahedral cavities creates an ‘external’
periodic potential for the intercalating lithium ions. In principle, this potential would ‘try’
to lock the system into a commensurate configuration. However, it has to compete with
strong repulsive Coulomb forces between intercalated lithium ions, which will tend to
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form a regular distribution of the intercalated ions. In general, this distribution would
be incommensurate with the periodic array of cubeoctahedral cavities. The strengths of the
two competing interactions then determine the type of the modulation, i.e. the formation of
chaotic structures, or commensurate or incommensurate superstructures.

Figure 4. The one-dimensional Frank and van der Merwe model. The springs represent
interactions between atoms, the wavy line the periodic potential. (a) Commensurate structure,
(b) incommensurate structure, and (c) chaotic structure.

Such a system with two competing interactions can be described theoretically in terms
of a Frank and van der Merwe model [11]. This model, with a sinusoidal potential, was
originally introduced by Frenkel and Kontorova [10], and was subsequently studied by
several authors, in particular by Frank and van der Merwe [11], Theodorou and Rice [13],
Aubry [14], Green [15], and Bak [16, 17]. The one-dimensional Frank and van der Merwe
model is illustrated in figure 4. It consists essentially of a chain of atoms connected by
harmonic springs interacting with an underlying periodic potential of periodb. Depending
on the strengths of the different interactions, commensurate, incommensurate, or chaotic
order may occur. In our case, the competing interactions are Li+–Li+ repulsion and Li+–
[V 2O5]− attraction and repulsion.

The energy function of the system is composed of two essential terms, an elastic energy
term, taking account of the repulsive forces represented by the harmonic springs between
neighbouring atoms, and a term for the potential energy, given by the periodic potential of
the basic lattice [17]. The microscopic energy of the Frenkel–Kontorova model is given as
equation (3):

E =
∑
n

[
1

2b2
(xn+1− xn − a0)

2+ V
(

1− cos
2π

b
xn

)]
. (3)

The total energyE of the system is given by the sum over alln atoms of the chain.
The first term represents the elastic energy, wherexn is the position of thenth atom anda0

is the lattice constant of the chain, in the absence of the periodic potential with periodb,
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expressed in the second term.V is the amplitude of the periodic potential. In the absence
of the periodic potential, the harmonic term would favour a lattice constanta = a0 which,
in general, would be incommensurate withb: the chain then forms an incommensurate
structure (figure 4(b)). On the other hand, strong potential forces would force the lattice to
relax into a commensurate structure witha = nb (figure 4(a)). Even in cases where the
potential is not strong enough to force the chain into commensurability, the potential will
always modulate the chain. If the potential is very strong compared with the elastic term,
it is possible to distribute the atoms randomly among the potential minima (figure 4(c)). In
this case the formation of a chaotic structure is observed.

Both energy terms, the elastic energy and the potential energy, depend on external
parameters, such as temperature, pressure, and chemical composition. When one of the
external parameters changes, the modulation wave vectorq, in general, changes too.
Possible ways in which the modulation wave vector can change as some parameter is
varied are known as the devil’s staircase (see, for example, [17]).

The problem with such a simple model is that one would expect a continuous variation
of the modulation wave vectorq because of the two stoichiometry-dependent energy terms
in the Frank and van der Merwe model. In addition, one would expect a commensurate
twofold superstructure forx = 0.5, which is not found experimentally.

A comprehensive understanding of the behaviour of the modulation wave vector as a
function of the lithium stoichiometry requires a third, stoichiometry-independent interaction
to explain the periodicity of the system. A possibility for a third competing interaction is
provided by the Friedel oscillations [19] in the V2O5 conduction band induced by a Li+

ion acting as an impurity. The periodlF of these oscillations is in principle independent
of the lattice constant of the V2O5 substructure. Assuming the Friedel oscillations to be
independent of the different Li+ ions, an effective Li+–Li+ interaction potential results,
with a periodicity oflF . Between Li+ ions, distances are favoured, for which the maxima
in the charge distribution in the V2O5 electron bands induced by one Li+ ion coincide with
the maxima induced by the neighbouring Li+.

Friedel oscillations provide an explanation for the behaviour found for low
concentrations of Li+ (the ε-phase). On decreasing the concentration of Li+, the direct
Coulomb interaction of Li+ ions becomes gradually less and less important. A possible
order of Li+ is then determined by the potential generated by Friedel oscillations and
the Li+–V2O5 potential. The periodicity of this order then will be governed by the
strength and periodicities of both interactions, all of these quantities being constant for low
concentrations of Li+. The periodicity of the Li+ order thus should become independent
of the concentration (or tend asymptotically towards a limiting value). Experimentally, we
have found thatγ = 0.435(5) for x 6 0.52. Alternatively, the observation of a constant
value ofγ can be interpreted as a lock-in at the commensurate value 7/16= 0.4375.

At higher concentrations of Li+, e.g. in theε′-phase withx > 0.52, the direct interaction
between Li+ ions becomes more important. (Note that forx < 0.5 it is always possible to
surround Li+ by empty cubeoctahedral holes, whereas forx > 0.5, it is necessary to have
neighbouring cubeoctahedral holes occupied by Li+ ions. This most probably introduces
a strong repulsive contribution to the lattice energy.) This interaction is concentration
dependent, and one expects the period of the ordering to depend on the concentration, too,
as found experimentally.

The concentration dependence ofγ represents a devil’s staircase with another plateau
for 0.5506 x 6 0.575 with γ = 0.465(5) or 7/15= 0.467. Within the resolution of our
experiment there is no lock-in at the simple values 6/13 and 5/11 between the observed ones;
in particular, there is no lock-in at 1/2. With our present knowledge we cannot explain why
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lock-in is only observed at 7/16 and 7/15. Insufficient resolution for the stoichiometryx

may be one reason, but possibly not the only one.
The highest value forγ was found for the highest measured lithium concentration of

x = 0.707 with γ = 0.565(5). To a first approximation, the modulation wave vector
expresses the ratio of the lattice parametersb and b′ of the two sublattices V2O5 and
Li. The increase of the lithium stoichiometry results, in general, in a decrease of the
interionic distances between neighbouring lithium ions, and therefore in an increase of the
incommensurate componentγ . The value ofγ = 0.565 seems to express a minimum value
for the interionic Li+–Li+ distances. This can be understood as being a consequence of
the increase in the harmonic energy term. For sufficiently high lithium concentrations, the
repulsion becomes so strong that the system has to undergo a phase transition in order to
minimize the interionic interactions. Such a phase transition can be observed forx = 0.8;
the resulting phase is the so-calledδ-phase, with a different V2O5 sublattice (see section 1).

The observed stoichiometry dependence is in accordance with the theory of the Frank
and van der Merwe model. Depending on the strengths of the competing interactions,
complicated phase diagrams with several high-order commensurate and incommensurate
phases—known as the different types of staircase—can be predicted from the theory of the
Frank and van der Merwe model. For the theoretical background of the devil’s staircase,
see, for example, Bak [17] and Aubry and Le Daeron [18].

The different behaviours ofq are in accordance with the different low-temperature
stabilities of the two phases. The phase boundary atx = 0.52 corresponds to the critical
concentration for the isomorphous stoichiometry-induced phase transitionε-Li xV2O5 →
ε′-Li xV2O5 [3].

5. Conclusion

Electron diffraction has revealed that the orthorhombic room-temperature phases ofε-
Li xV2O5 and ε′-Li xV2O5 are incommensurately modulated. The space group of the
average structure isPmmn; the (3 + 1)-dimensional superspace group is found to be
Pmmn (0γ 1/2). The modulation wave vector is one dimensional for both phases, and
is given byq = γ b∗ + 1

2c
∗. The stoichiometry dependence of the wave vector is signif-

icantly different forε- and ε′-Li xV2O5. The incommensurate componentγ is constant at
γ = 0.435(5) for ε-Li xV2O5 with 0.3996 x 6 0.512, and atγ = 0.465(5) for ε′-Li xV2O5

with 0.5506 x 6 0.575, but is a smooth function of the lithium concentration for the
stoichiometry range 0.5756 x 6 0.707.

The variation ofq can be understood in terms of an extended one-dimensional Frank
and van der Merwe model. The energy function of the Frenkel–Kontorova model with two
competing energy terms—elastic energy due to repulsive Li–Li interaction on one hand,
and potential energy due to the underlying periodic V2O5 potential on the other hand—
must be extended to a third term, describing a periodic potential with minima separated by
a periodlF , determined by the Friedel oscillations in the V2O5 electron bands. Because
of the small number of intercalated ions and therefore weak Li+–Li+ interactions, the two
stoichiometry-independent periodic potentials dominate in theε-phase, while the elastic
energy term increases inε′-Li xV2O5 and leads to a variation in the dependence ofq on x.

The formation of incommensurate modulated structures is the first and very important
evidence of a Li ordering process in the intercalated V2O5 bronzesε- and ε′-Li xV2O5.
Furthermore, the new results are of great importance for the comprehension of the
intercalation mechanism, and for the understanding of the various compositionally and
thermally induced phase transitions.



The modulation wave vector ofε-LixV2O5 andε′-LixV2O5 6239

In the present paper we have concentrated on the structural features of the modulated
phases at room temperature, and the stoichiometry dependence of the modulation wave
vector. Future investigations will focus on the temperature dependence, with particular
consideration of the ferroelastic low-temperature phase transition inε′-Li xV2O5, and the
high-temperature phase transitionsε → β andε → γ .
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